extension | φ:Q→Aut N | d | ρ | Label | ID |
(C32×C6).1C32 = C2×C32.24He3 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).1C3^2 | 486,63 |
(C32×C6).2C32 = C2×C33.C32 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).2C3^2 | 486,64 |
(C32×C6).3C32 = C2×C33.3C32 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).3C3^2 | 486,65 |
(C32×C6).4C32 = C2×C32.27He3 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).4C3^2 | 486,66 |
(C32×C6).5C32 = C2×C32.28He3 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).5C3^2 | 486,67 |
(C32×C6).6C32 = C2×C32.29He3 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).6C3^2 | 486,68 |
(C32×C6).7C32 = C2×C33.7C32 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).7C3^2 | 486,69 |
(C32×C6).8C32 = C2×C32.23C33 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).8C3^2 | 486,199 |
(C32×C6).9C32 = C2×C92⋊7C3 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).9C3^2 | 486,202 |
(C32×C6).10C32 = C2×C92⋊4C3 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).10C3^2 | 486,203 |
(C32×C6).11C32 = C2×C92⋊5C3 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).11C3^2 | 486,204 |
(C32×C6).12C32 = C2×C92⋊8C3 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).12C3^2 | 486,205 |
(C32×C6).13C32 = C2×C92⋊9C3 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).13C3^2 | 486,206 |
(C32×C6).14C32 = C2×He3.C32 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 54 | 9 | (C3^2xC6).14C3^2 | 486,216 |
(C32×C6).15C32 = C2×He3⋊C32 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 54 | 9 | (C3^2xC6).15C3^2 | 486,217 |
(C32×C6).16C32 = C2×C32.C33 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 54 | 9 | (C3^2xC6).16C3^2 | 486,218 |
(C32×C6).17C32 = C2×C9.2He3 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 54 | 9 | (C3^2xC6).17C3^2 | 486,219 |
(C32×C6).18C32 = C2×3- 1+4 | φ: C32/C1 → C32 ⊆ Aut C32×C6 | 54 | 9 | (C3^2xC6).18C3^2 | 486,255 |
(C32×C6).19C32 = C2×C33⋊C9 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 54 | | (C3^2xC6).19C3^2 | 486,73 |
(C32×C6).20C32 = C2×C32.19He3 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).20C3^2 | 486,74 |
(C32×C6).21C32 = C2×C32.20He3 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).21C3^2 | 486,75 |
(C32×C6).22C32 = C2×He3⋊C9 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).22C3^2 | 486,77 |
(C32×C6).23C32 = C2×3- 1+2⋊C9 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).23C3^2 | 486,78 |
(C32×C6).24C32 = C2×C92⋊3C3 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).24C3^2 | 486,193 |
(C32×C6).25C32 = C18×He3 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).25C3^2 | 486,194 |
(C32×C6).26C32 = C18×3- 1+2 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).26C3^2 | 486,195 |
(C32×C6).27C32 = C2×C34.C3 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 54 | | (C3^2xC6).27C3^2 | 486,197 |
(C32×C6).28C32 = C2×C9⋊He3 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).28C3^2 | 486,198 |
(C32×C6).29C32 = C2×C9⋊3- 1+2 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).29C3^2 | 486,200 |
(C32×C6).30C32 = C2×C33.31C32 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).30C3^2 | 486,201 |
(C32×C6).31C32 = C6×He3.C3 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).31C3^2 | 486,211 |
(C32×C6).32C32 = C6×He3⋊C3 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).32C3^2 | 486,212 |
(C32×C6).33C32 = C6×C3.He3 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).33C3^2 | 486,213 |
(C32×C6).34C32 = C2×C9.He3 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 54 | 3 | (C3^2xC6).34C3^2 | 486,214 |
(C32×C6).35C32 = C3×C6×3- 1+2 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).35C3^2 | 486,252 |
(C32×C6).36C32 = C6×C9○He3 | φ: C32/C3 → C3 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).36C3^2 | 486,253 |
(C32×C6).37C32 = C2×C3.C92 | central extension (φ=1) | 486 | | (C3^2xC6).37C3^2 | 486,62 |
(C32×C6).38C32 = C6×C32⋊C9 | central extension (φ=1) | 162 | | (C3^2xC6).38C3^2 | 486,191 |
(C32×C6).39C32 = C6×C9⋊C9 | central extension (φ=1) | 486 | | (C3^2xC6).39C3^2 | 486,192 |